mardi 6 juillet 2010

Une vie pluricellulaire vieille de deux milliards d'années

Voir la source?



Les premières traces de vie sont apparues il y a environ trois milliards et demi d'années : il s'agissait d'organismes procaryotes, c'est-à-dire privés de noyau. Autre événement majeur dans l'histoire de la vie, « l'explosion cambrienne », autour de 600 millions d'années, marque la prolifération du nombre d'espèces vivantes, accompagnée d'une hausse subite de la concentration en oxygène dans l'atmosphère. Mais que se passe-t-il entre 3,5 milliards et 600 millions d'années ? Sur cette période appelée le Protérozoïque, les scientifiques disposent de très peu d'informations. Or, c'est au cours de cette époque cruciale que la vie se diversifie : aux procaryotes s'ajoutent les eucaryotes, organismes uni ou pluricellulaires dont l'organisation et le métabolisme sont plus complexes. De grande taille, ces êtres vivants s'opposent notamment aux procaryotes par la présence de cellules qui possèdent un noyau contenant l'ADN.

En étudiant le paléoenvironnement d'un site fossilifère situé à Franceville au Gabon, Abderrazak El Albani et son équipe ont mis au jour en 2008, de manière tout à fait inattendue, des restes fossiles parfaitement préservés dans des sédiments âgés de 2,1 milliards d'années. Plus de 250 fossiles ont été récoltés à ce jour, parmi lesquels une centaine a été étudiée en détail. Leur morphologie ne peut s'expliquer par des mécanismes purement chimiques ou physiques. D'une taille atteignant 10 à 12 centimètres, trop grands et trop complexes pour être des procaryotes ou des eucaryotes unicellulaires, ces spécimens présentent des formes diversifiées, établissant que différents types de vie co-existaient durant le début du Protérozoïque. Car il s'agit bel et bien de matière vivante fossilisée !

Pour le démontrer, les chercheurs se sont appuyés sur plusieurs techniques de pointe qui permettent de cerner la nature des échantillons et de reconstruire leur environnement. Grâce à une sonde ionique capable de mesurer le contenu des isotopes du soufre, la distribution relative de la matière organique a été précisément cartographiée. Cette matière est ce qu'il reste de l'organisme vivant, qui s'est transformé en pyrite (un minéral formé de disulfure de fer) au cours de la fossilisation. Les chercheurs ont ainsi pu distinguer le fossile du sédiment gabonais (constitué d'argiles). De plus, en utilisant un scanner tridimensionnel à haute résolution ultra-perfectionné (aussi appelé microtomographe X), ils ont pu reconstituer les échantillons dans leurs trois dimensions et surtout apprécier leur degré d'organisation interne dans les moindres détails, sans en compromettre l'intégrité. La méthode est en effet non invasive. La forme aboutie et régulière de ces fossiles indique un degré d'organisation pluricellulaire. Ces organismes vivaient en colonies : plus de 40 spécimens au demi-mètre carré ont parfois été recueillis. Ils constituent donc à ce jour les eucaryotes pluricellulaires les plus anciens jamais décrits.

En étudiant les structures sédimentaires de ce site remarquable par sa richesse et sa qualité de conservation, les scientifiques ont révélé que ces organismes vivaient dans un environnement marin d'eau peu profonde (20 à 30 mètres), souvent calme mais périodiquement soumise à l'influence conjuguée des marées, des vagues et des tempêtes. Pour pourvoir se développer il y a 2,1 milliards d'années et se différencier à un niveau jamais atteint auparavant, les auteurs pensent que ces formes de vie ont sans doute bénéficié de l'augmentation significative mais temporaire de la concentration en oxygène dans l'atmosphère. Celle-ci s'est produite entre 2,45 et 2 milliards d'années. Puis, il y a 1,9 milliards d'années, le taux d'oxygène dans l'atmosphère a brusquement chuté.

Jusqu'à présent, on supposait que la vie multicellulaire organisée était apparue il y a environ 0,6 milliard d'années et qu'avant, la Terre était majoritairement peuplée de microbes (virus, bactérie, parasite...). Cette nouvelle découverte déplace le curseur de l'origine de la vie multicellulaire de 1,5 milliards d'années et révèle que des cellules avaient commencé à coopérer entre elles pour former des unités plus complexes et plus grandes que les structures unicellulaires. Plusieurs pistes de travail sont désormais à creuser : comprendre l'histoire du bassin gabonais et pourquoi les conditions y étaient réunies pour permettre cette vie organisée et complexe, explorer ce site pour enrichir la collection de fossiles mais également comparer l'histoire de l'oxygénation de la Terre à la minéralisation des argiles figurent parmi les plus immédiates. Mais, le plus urgent reste la protection de ce site exceptionnel.






. Rejoignez la communauté SCIencextrA . . BlogBang .

    Choose :
  • OR
  • To comment
Aucun commentaire:
Write comments